

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

SELECTIVE EXTRACTION OF BROMIDE WITH LIQUID ORGANIC MEMBRANE

Ali Asghar Ensafi^a; Habibollah Eskandari^a

^a College of Chemistry, Isfahan University of Technology, Isfahan, Iran

Online publication date: 13 February 2001

To cite this Article Ensafi, Ali Asghar and Eskandari, Habibollah(2001) 'SELECTIVE EXTRACTION OF BROMIDE WITH LIQUID ORGANIC MEMBRANE', *Separation Science and Technology*, 36: 1, 81 — 89

To link to this Article: DOI: 10.1081/SS-100000852

URL: <http://dx.doi.org/10.1081/SS-100000852>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SELECTIVE EXTRACTION OF BROMIDE WITH LIQUID ORGANIC MEMBRANE

Ali Asghar Ensafi* and Habibollah Eskandari

College of Chemistry, Isfahan University of Technology,
Isfahan 84154, Iran

ABSTRACT

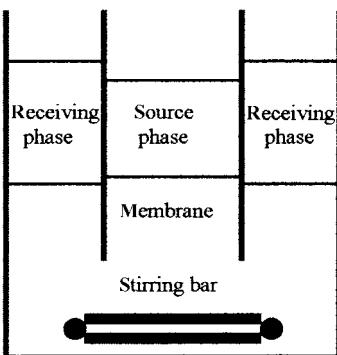
A novel separation technique for bromide in the presence of various anions with a liquid membrane was reported. Initially, bromide ion was oxidized by sodium dichromate in acidic media (aqueous or source phase), followed by a continuous chloroform extraction (organic phase). Next, a back-extraction of bromine into a second aqueous phase (receiving phase) containing nitrite ions was conducted in order to reduce bromine into bromide. Parameters affecting the transport efficiency as well as the influences of potential interfering ions in this bromide extraction method were studied. After a 70-min extraction period, $91.4 \pm 1.2\%$ of the bromide ions were transported across the liquid membrane. The developed extraction method was used for the detection of bromide ions in seawater.

Key Words: Extraction; Bromide; Liquid membrane.

*Address correspondence to A. A. Ensafi. Fax: +98-31-8912350. E-mail: Ensafi@cc.iut.ac.ir

INTRODUCTION

In recent times, intense research of transport phenomena has been carried out in the field of chemistry and biology. Nevertheless, the separation of less lipophilic anions, such as bromide, by means of extraction is a relatively new area of research. Up to this date, relatively few anion carriers have been reported (1). Out of these lipophilic carriers, the most commonly used carriers are copper complexes (2,3) and a lipophilic complex of UO_2^{2+} (4), used for the extraction of dihydrogen phosphate anions. Other research groups have reported the application of the oxidized form of *N,N,N',N'*-tetramethyl *p*-phenylenediamine (TPMD) as a picrate transporter (5). Vitamin B₁₂ derivatives (6), quaternary ammonium or phosphonium salts (7), and triaryl cations (8) have also been used as carriers, but the latter carrier exhibits a relative selectivity for bromide. The successful extraction of bromide has already been reported (5,9), but the method exhibits low selectivity and long extraction periods, and in few cases transportation was carried out with oxidation-reduction couples. As far as we know, no reports have been made on the selective transport of bromide ions through a liquid membrane, using a redox couple.


In this paper we will demonstrate a selective extraction method for bromide that is based on an oxidation-reduction mechanism. With this method, bromide is quantitatively and selectively converted to bromine by dichromate ions, which are in turn extracted into the chloroform media. The bromine now present in the organic phase comes in contact with the second aqueous phase (receiving phase) that contains nitrite ions. Nitrite acts as a reducing agent that converts the bromine to bromide, which is easily extracted into the second aqueous phase (receiving phase). The amounts of bromide in the source and receiving phase have been determined by extractive-photometric determination of Br₂ with chloroform at 410 nm and by potentiometric titration using a standard silver nitrate solution, respectively. We will demonstrate that the transportation method is efficient, selective, and rapid and can also be used for the separation of bromide. This method will also be applied to separate trace amounts of bromide from seawater.

EXPERIMENTAL

Reagents

Double distilled water was used throughout all experiments. Stock solutions were prepared using KBr (Merck), sodium dichromate, Na₂Cr₂O₇ (Merck), and sodium nitrite. The sodium nitrite solution had a final concentration of 1.00 M and was prepared by dissolving 6.90 g NaNO₂ (Merck) in water in a 100-mL volumetric flask. Chloroform (Fluka) served as the liquid membrane for all experiments.

Figure 1. Schematic diagram of the apparatus used for the extraction of bromide with liquid membrane.

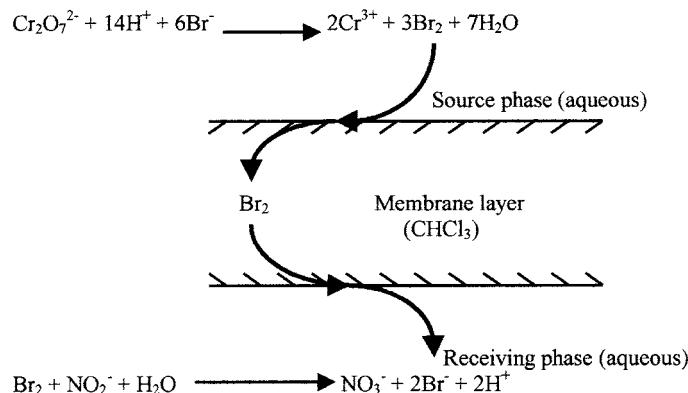
Apparatus

A homemade cylindrical glass cell (4-cm internal diameter) that vertically holds a glass tube (1.8-cm internal diameter) was used for all experiments (Fig. 1). The transport cell contains two immiscible solvents (three phases). Water used, as the source is located within the inner glass tube, is separated from the aqueous receiving solution by an organic (CHCl_3) liquid membrane as shown in Figure 1. A conventional polymeric stopper for the source phase was used to prevent bromine evaporation from the aqueous solution. Transport processes through the different phases were carried out while the solutions were stirred with a magnetic stirring motor set at 250–300 rpm.

All potentiometric titration was made by using a Corning potentiometer (Model 435) with a silver wire as an indicator electrode and calomel reference electrode. A Perkin-Elmer spectrophotometer (Model 551) was used for all spectrophotometric and turbidimetric measurements. A Perkin-Elmer atomic absorption spectrometer (Model 2380) was used to determine all cations present in the source and receiving phases.

Procedure

All experiments were carried out at temperatures between 25 and 30°C (room temperature). A mixture of 1.0 mL bromide solution (0.400 M), 2.0 mL concentrated sulfuric acid (7.5 M), and 2.0 mL of sodium dichromate (0.63 M) was used as the source phase; the total volume of the source phase solution was 5 mL. The outer receiving solution contained 10 mL of 0.30 M sodium nitrite as a reducing agent (Fig. 1). The concentration of bromide in the source phase and receiving phase was determined by the following methods: For the

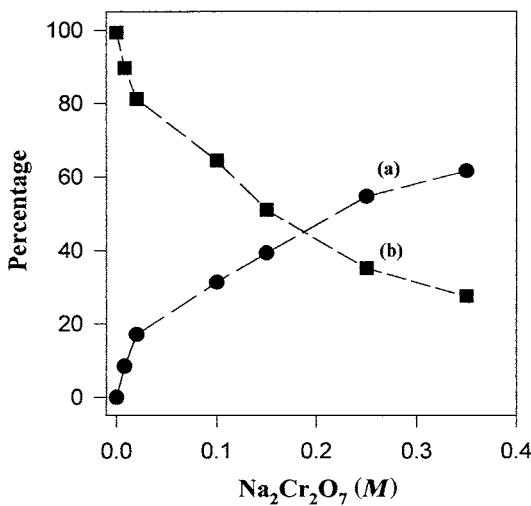


receiving phase, 2.0 mL of the solution was mixed with 15 mL 0.02 *M* nitric acid prior to the potentiometric titration of bromide with a standard 0.0203 *M* AgNO_3 solution. For the source phase, 1 mL bromide sample was taken from the source phase and diluted five-fold with water. Next, 2.0 mL aliquots of the dilute bromide solution were treated with 2.0 mL of 0.040 *M* acidic permanganate solution (1.0 mL of 5 *M* sulfuric acid) in order to convert bromide to bromine. Subsequently, the produced bromine is extracted into 5 mL of CHCl_3 , and the absorbance of the chloroform solution was measured at 410 nm. The bromine content was calculated by using the calibration graph obtained under the same conditions.

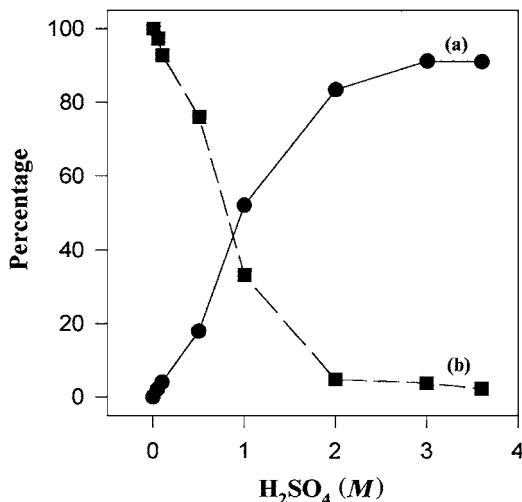
Several cations such as Mg^{2+} , Ca^{2+} , K^+ , and Na^+ and anions such as Cl^- , I^- , SO_4^{2-} , and PO_4^{3-} were tested in order to investigate their effect on bromide transfer processes. Atomic absorption spectrophotometry was used to measure the amounts of cations in the source and receiving phases. Iodide was determined spectrophotometrically at 510 nm after the oxidation-extraction method was used to produce iodine as described for the bromide in the source solution. Determination of chloride was carried out by potentiometric titration with a standard 0.0203 *M* AgNO_3 solution. Phosphate traces were determined spectrophotometrically at 780 nm by implementing the phosphomolybdenum blue method (10). Sulfate contents were measured by turbidimetry after dilution with of 2.0 mL of the source solution or receiving solution and the treatment with alcoholic BaCl_2 solution (11).

RESULTS AND DISCUSSION

The proposed mechanism for the extraction phenomena can be seen in the Scheme 1. The initial reaction in the source phase is followed by the reaction at


Scheme 1.

the interphase (liquid membrane/receiving phase). The produced bromide is then extracted into the receiving phase.


The type of oxidizing agent in the source phase and type of reducing agent in the receiving phase are the most important factors for the selective oxidation-reduction reaction. We chose dichromate in sulfuric acid as the appropriate oxidant in the source phase, because of its inability to oxidize chloride under the above conditions. Nevertheless, bromide ions are subject to oxidation. In addition, the types of reducing agent present in the receiving phase affect the selectivity of the ion transfer through the interphase. Our studies showed that nitrite ions in a weak acidic, basic, and neutral media are a powerful reducing agent for rapid and quantitative reduction of bromine to bromide. It is also a selective oxidizing agent for iodide in acidic media to produce iodine. Thus, nitrite ions were selected as reducing agents for the receiving phase.

Optimization of the bromide extraction method involved varying dichromate and nitric concentrations at different pH levels within the three phases. Figure 2 shows the effect of dichromate concentration on the transport of 0.08 M Br⁻ in the source phase. Results show that the transport efficiency increases exponentially by increasing dichromate concentration up to 0.35 M. Dichromate solubility is limited and thus the studies at higher concentrations could not be performed. Consequently, all experiments were carried out using a concentration of 0.25 M dichromate.

Figure 2. Effect of dichromate concentration on the bromide transport; Bromide found a) in the receiving phase and b) in the source phase. Conditions: 0.30 M NO₂⁻ in the receiving phase; 1.0 M H₂SO₄ in the source phase; 30 mL of chloroform as a membrane phase; and time of transport, 70 min.

Figure 3. Influence of sulfuric acid concentration on the bromide transport; Bromide found a) in the receiving phase and b) in the source phase. Conditions: NO_2^- , 0.30 M in the receiving phase; 0.25 M $\text{Cr}_2\text{O}_7^{2-}$ in the source phase; 30 mL of chloroform as a membrane phase; and time of transport, 70 min.

Extraction efficiency was further investigated under different sulfuric acid concentrations. Figure 3 shows a correlation between acid concentration levels and higher extraction efficiency; maximum extraction efficiency is reached at 3.0 M. At this point, greater amounts of the reagent no longer affect efficiency. Therefore, 3.0 M sulfuric acid became the concentration of choice.

The influence of nitrite concentration on the bromine reduction in the receiving phase was studied with the other optimum reagents concentration. The results are shown in Table 1, that show the maximum transfer occurred at a concentration of 0.10 M. The final concentration of 0.3 M nitric acid (optimal stoichiometric excess) was used for all experiments.

The oxidizing ability of nitrite within pH levels of 3–8 in the presence and absence of buffer in the receiving solution were studied. Results show that transfer efficiency is independent of pH. However, the transfer efficiency in the receiving phase decreased with a pH below 2.0. Therefore, a buffer was not used in the nitrite solution in the receiving phase. No considerable effects on the extraction efficiency were found for bromide concentrations (source phase) ranging from 0.02 to 0.10 M. The bromide transfer from the source solution to the liquid membrane and from the membrane to the receiving solution behaves in accordance to first-order kinetics, as no additional carrier is used for the extraction.

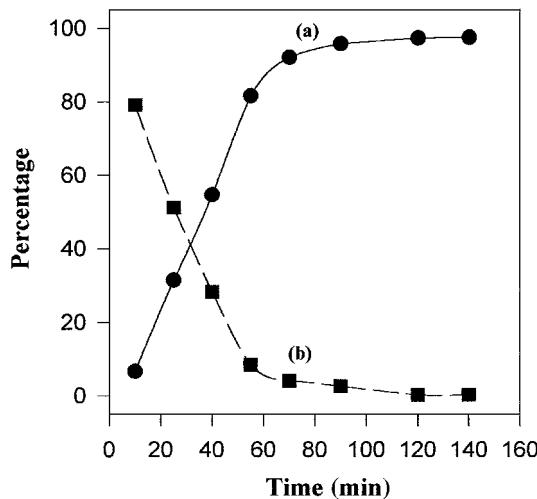


Table 1. Effect of Sodium Nitrite Concentration on the Bromide Transport

Concentration of Sodium Nitrate $\times 10^2$ (mol/L)	Percentage Transported into Receiving Phase	Percentage Remaining into Source Phase
0.0	1.1	7.1
1	30.9	7.2
3	59.5	5.0
5	82.6	7.3
10	92.1	4.5
15	92.5	3.8
20	92.4	4.1
30	91.5	3.5

Conditions: source phase, 5.0 mL solution containing $8.0 \times 10^{-2} M$ potassium bromide, 3.0 M sulfuric acid, and 0.25 M sodium dichromate; membrane phase, 30 mL of chloroform; receiving phase, 10 mL of sodium nitrite solution; time of transport, 70 min.

The increase in stirring time and its influence on transfer efficiency was tested using a 0.08 M bromide concentration (Fig. 4). The results show that after 70 min about 92.0% of the bromide was transferred through the liquid membrane, whereas after 120 min, 97.3% of the bromide was transferred.

Figure 4. Dependence of transfer efficiency vs. time; a) in the receiving phase and b) in the source phase. Conditions: NO_2^- , 0.30 M in the receiving phase, H_2SO_4 , 3.0 M and 0.25 M $\text{Cr}_2\text{O}_7^{2-}$ in the source phase, and 30 mL of chloroform as a membrane phase.

Table 2. Effect of Some of Ions on the Bromide Transport

Ion (Concentration)	Percentage Transported into Receiving Phase	Percentage Remaining in Source Phase
Br ⁻ (4.0 × 10 ⁻² M)	91.1	3.3
Cl ⁻ (0.4 M)	0.0	99.5
I ⁻ (0.4 M)	0.15	—
Br ⁻ (4.0 × 10 ⁻² M) and I ⁻ (0.4 M)	92.1 0.25	3.8 —
Br ⁻ (4.0 × 10 ⁻² M) and Cl ⁻ (0.4 M)	92.7 0.0	2.7 99.7
Br ⁻ (4.0 × 10 ⁻² M) and Mg ²⁺ , Ca ²⁺ , K ⁺ , Na ⁺ (4.0 × 10 ⁻² M) ^a	91.3 0.0	2.9 100
Br ⁻ (4.0 × 10 ⁻² M) and PO ₄ ³⁻ (4.0 × 10 ⁻² M) ^a	90.6 0.0	3.5 99.8

Conditions: source phase, 5.0 mL solution containing 4.0 × 10⁻² M potassium bromide, 0.25 M sodium dichromate, and 3.0 M sulfuric acid; receiving phase, 10.0 mL of 0.30 M sodium nitrite; membrane phase, 30 mL of chloroform; time of transport, 70 min.

^aConcentration of each of the ions was added to the source solution.

Selectivity of the extraction method was evaluated after adding a variety of ions to the standard bromide solution within the source phase. The following cations, Mg²⁺, Ca²⁺, and K⁺, and Na⁺ and anions, SO₄²⁻, PO₄³⁻, I⁻, and Cl⁻ were tested. The results are shown in Table 2. Chloride ion cannot be oxidized by dichromate in the source phase, and iodine ion cannot be reduced by nitrite in the receiving phase and thus are not transferred into the receiving phase. Anions, PO₄³⁻ and SO₄²⁻ do not react with dichromate, therefore these ions do not produce neutral extractable species to extract that would interfere with bromide transfer.

Water from the Persian Gulf was used to carry out a practical application of the proposed bromide extraction method. The phenol red standard method (12) was used to compare the results obtained from both methods. The amount of seawater bromide ions found using the standard method (12) was 69.8 ± 2.8 µg/mL (*n* = 5) and 66.4 ± 2.5 µg/mL (*n* = 5) using the new extraction method. This concludes good compatibility and applicability of the proposed extraction method for bromide as a practical analytical tool.

REFERENCES

1. Maruyama, K.; Tsukube, H.; Araki, T.J. Carrier Mediated Transport of Amino Acid and Simple Organic Anions by Lipophilic Metal Complex. *J. Am. Chem. Soc.* **1982**, *104*, 5197.

2. Maruyama, K.; Tsukube, H.; Araki, T.J. Aliphatic Copper Complex as a New Class of Anion Transport Carrier. *J. Chem. Soc. Chem. Comm.* **1980**, 966.
3. Araki, K.; Lee, S.K.; Otsuki, J. Efficient and Selective Up-Hill Transport of Anions by pH Induced Affinity Switching of a Copper Complex Carrier. *J. Chem. Soc. Dalton Trans.* **1996**, 1367–1372.
4. Visser, H.C.; Rudkevich, D.M.; Verboom, W.; De Jong F.; Reinhoudt, D.N. Anion Carrier Mediated Membrane Transport of Phosphate; Selectivity of $H_2PO_4^-$ Over Cl^- . *J. Am. Chem. Soc.* **1994**, *116*, 11554–11555.
5. Shinbo, T.; Kurihara, K.; Kobatake, Y.; Kamo, N. Active Transport of Picrate Anion Through Organic Liquid Membrane. *Nature* **1977**, *270*, 277–278.
6. Palet, C.; Munoz, M.; Daunert, S.; Bachas, L.G.; Valiente, M. Vitamin B12 Derivatives as Anion Carrier in Transport through Supported Liquid Membranes and Correlation with Their Behavior in Ion-Selective Electrode Membrane. *Anal. Chem.* **1993**, *65*, 1533–1536.
7. Behr, J.P.; Lehn, J.M. Transport of Amino Acids Through Organic Liquid Membranes. *J. Am. Chem. Soc.* **1973**, *95*, 6108–6110.
8. Ino, M.; Otsuki, J.; Araki K.; Seno, M. Transport Characterization of the Photo-Driven Active Transport by Triaryl Cations Across a Liquid Membrane. *J. Membr. Sci.* **1994**, *89*, 101–109.
9. Keihei, U.; Akira, O.; Hirotaka, H.; Makoto, T. Transport of Iron and Cobalt Complex Ions Through Liquid Membrane Mediated by Methyl Trioctyl Ammonium Ion with the Aid of Redox Reaction. *Sep. Sci. Technol.* **1983**, *18* (11), 969–983.
10. Marczenko, Z. *Separation and Spectrophotometric Determination of Elements*; Chapter 39, Phosphorus. Ellis Horwood: New York, 1986; 448.
11. Marczenko, Z. *Separation and Spectrophotometric Determination of Elements*; Chapter 40, Sulphur. Ellis Horwood: New York, 1986; 542.
12. Larsen, R.P.; Ingber, N.M. Determination of Bromide in Uranium Fluorides and Oxides. *Anal. Chem.* **1959**, *31* (6), 1084–1086.

Received September 16, 1999

Revised April 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100000852>